Chapter 3D Random Behavior of Means

Some Estimates

Parameter	Measure	Statistic
μ	Mean of a single population	\overline{X}
σ^2	Variance of a single population	<i>S</i> ²
σ	Standard deviation of a single population	5
p	Proportion of a single population	\hat{p}
$\mu_1 - \mu_2$	Difference in means of two populations	$\bar{X}_1 - \bar{X}_2$
$p_1 - p_2$	Difference in proportions of two populations	$\hat{p}_1 - \hat{p}_2$

- To estimate the mean of a population, we could use the Sample mean (\bar{X}) .
- Is the sample mean a good estimate?

Population Mean

- Parameter labeled, μ.
- Often too large to calculate or too difficult to access.
- If a probability distribution can represent this population, then the population mean is considered the mean of a random variable.
- Consider estimating it with the sample mean. Would this be a "Good" Estimate?

A "Good" Estimate

An estimation method should be both accurate and precise.

- Accurate The method measures what it intended; correctly estimates the population parameter.
- Precise If the method is repeated, the estimates are very consistent.

To be a good golfer, we need to be both *accurate* (tends to hit the ball near the cup) and *precise* (shot is repeatable, consistent).

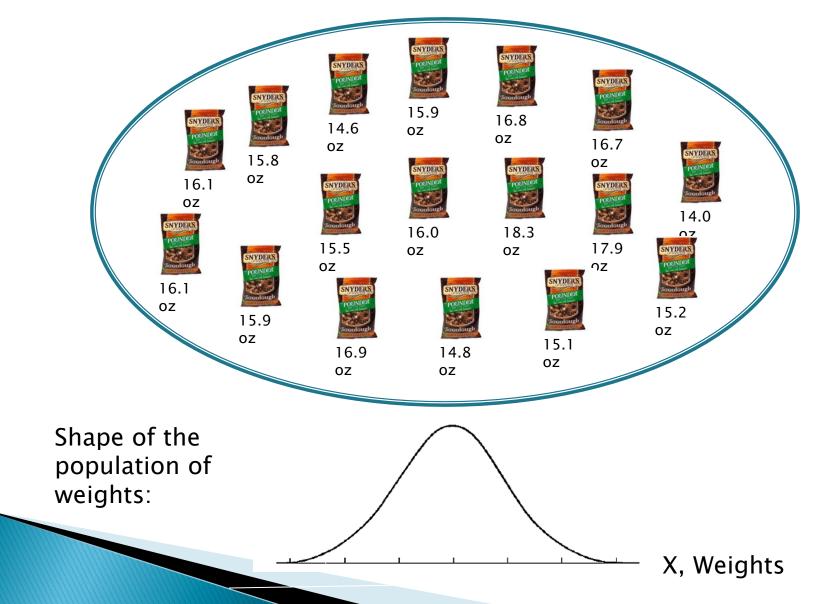
An accurate and precise estimate is called an *Unbiased* estimate

Estimating the mean (normal population)

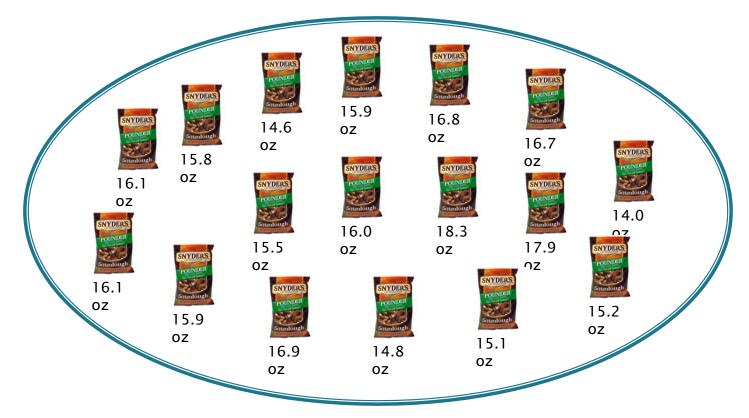
• Consider the distribution of weights of bags of pretzels. Assume the population distribution of weights is normal with $\mu = 16$ and $\sigma = 5$

Imagine taking multiple samples from this population

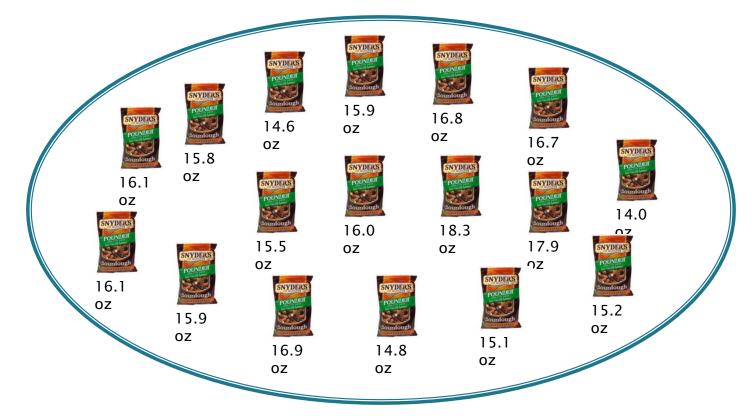
Population Distribution (Normal)

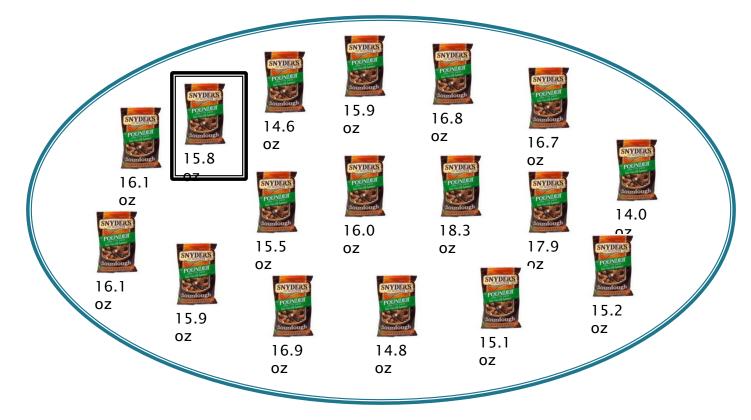


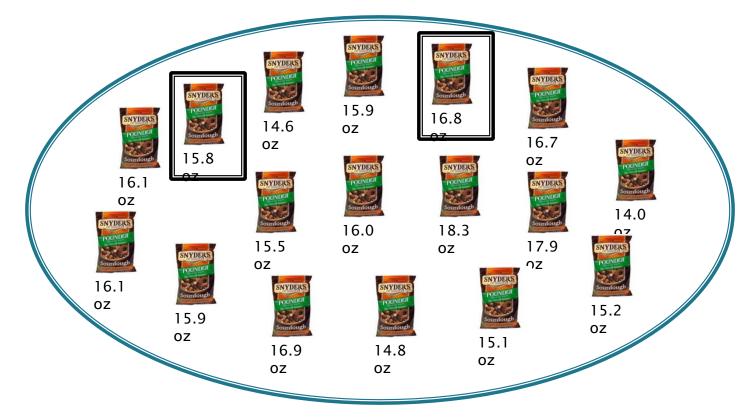
Population of Weights

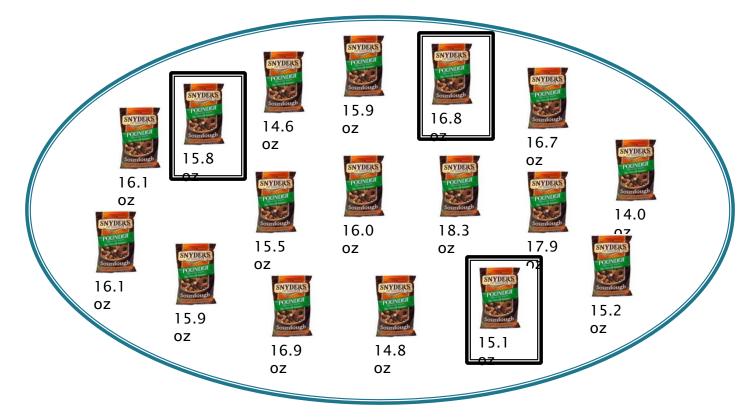


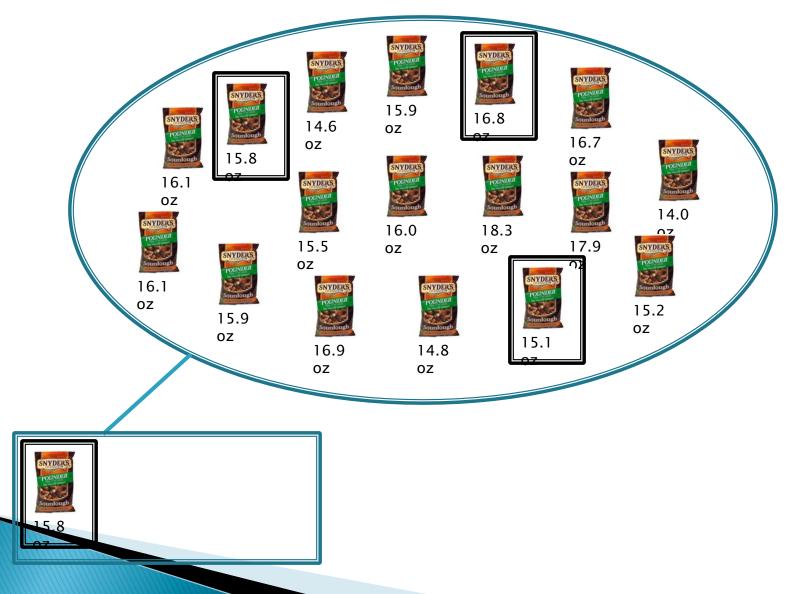
Impossible to obtain all the weights in the population

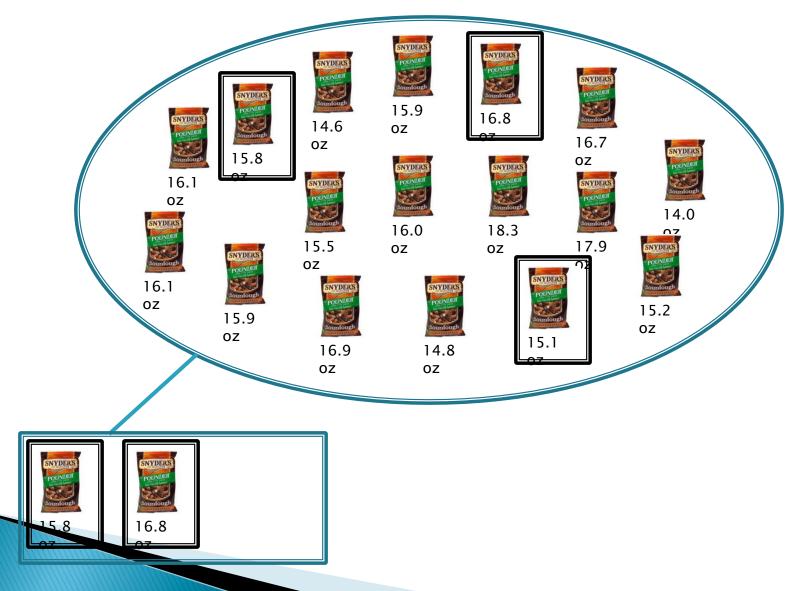


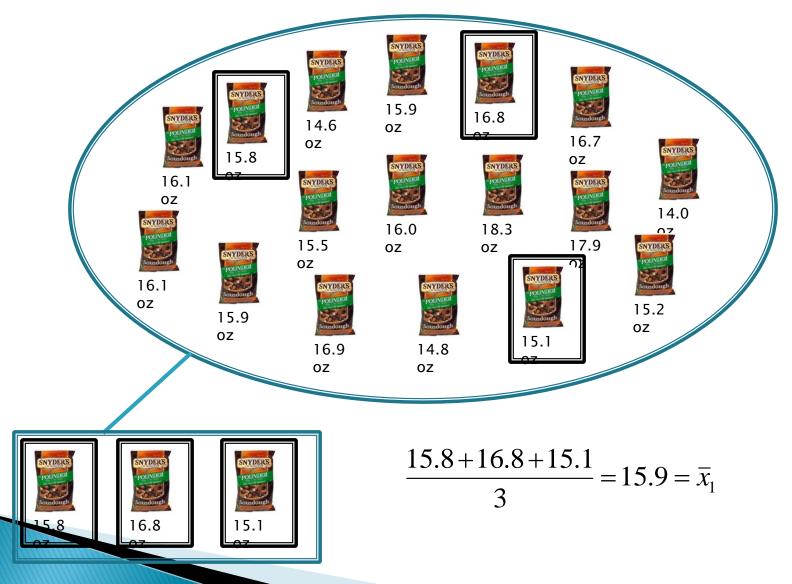






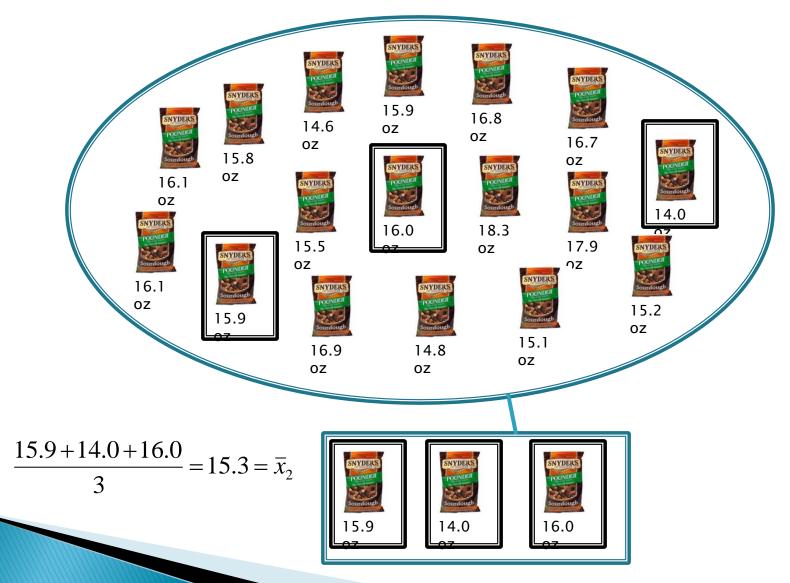


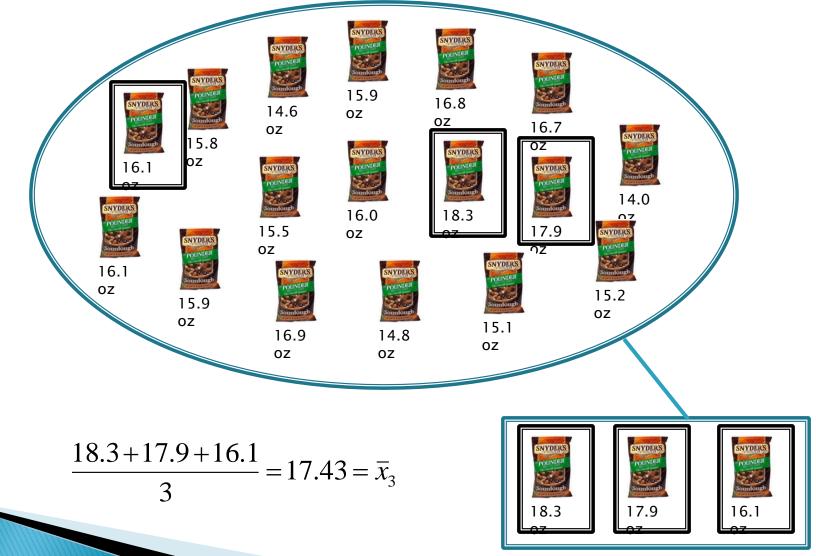


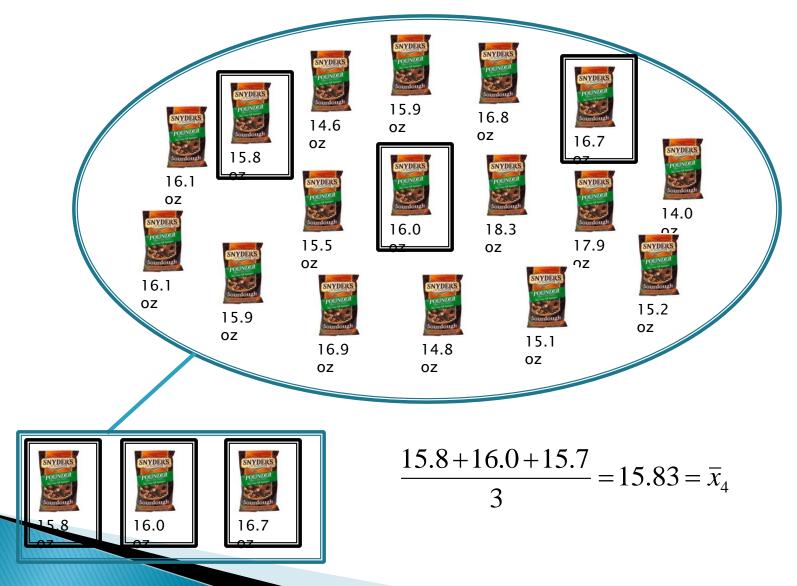


Sample Mean is a Good Estimate

- But, how close is \overline{x} to the unknown μ ?
- This sample mean that we just found comes from a distribution of sample means.
- Do you think all samples will result in the same sample mean?







Repeated samples

$$\frac{15.8 + 16.8 + 15.1}{3} = 15.9 = \overline{x}_1$$

$$\frac{15.9 + 14.0 + 16.0}{3} = 15.3 = \overline{x}_2$$

$$\frac{18.3 + 17.9 + 16.1}{3} = 17.43 = \overline{x}_3$$

$$\frac{15.8 + 16.0 + 15.7}{3} = 15.83 = \overline{x}_4$$

Sampling Variability

- The value of a statistic varies in repeated random sampling
- Main idea: to see how trustworthy a procedure is, ask what would happen if we repeated it many times.

Sampling Distribution

- The sampling distribution of a statistic is the distribution of all possible values taken by the statistic when all possible samples of a fixed size *n* are taken from the population.
- It is a theoretical idea; in reality, we do not actually build it (though today we will simulate it).
- The sampling distribution of a statistic is the probability distribution of that statistic.

Accuracy and Pecision Connection

- We need an estimation method that aims in the right direction (accurate).
- Also, we need an estimation method that if we repeat the process we would arrive at nearly the same estimate (precise).
- We measure accuracy and precision using simulation.
 - We think about an estimate's accuracy by considering bias (which focuses on center).
 - We will measure an estimate's precision with a statistic called the standard error (which focuses on spread).

Sampling in Minitab

- Create a hypothetical population
 - Calc -> Random Data > Normal (enter parameters and N)
- Using the pull down menus or commands in the session window will only allow you to take one sample at a time.
- If we want to take multiple samples at once, press "control and L" to open the command line editor
- > Type (or copy and paste) the following into this window

```
sample 5 c1 c2
sample 5 c1 c3
sample 5 c1 c4
```

```
. . . . . . . . .
```

You can read the first command as "take a sample of 5 from c1 and store it in c2"

Sampling Distribution of the sample mean (normal population)

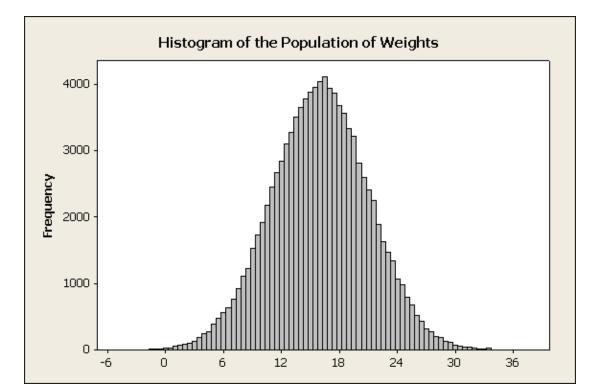
- We will take many random samples of a given size *n* from a population with mean *m* and standard deviation *s*.
- Some sample means will be above the population mean *m* and some will be below, making up the sampling distribution.
- We will begin with the normal "population" distribution (100,000 values) of weights with $\mu = 16$ and $\sigma = 5$.
- Let's simulate taking 1000 samples and graphing their means in Minitab (CLT Normal)

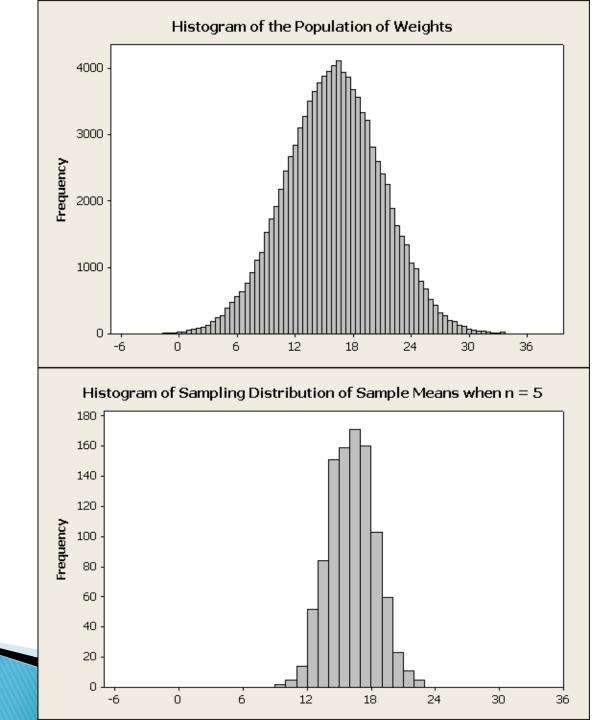
Questions to think about

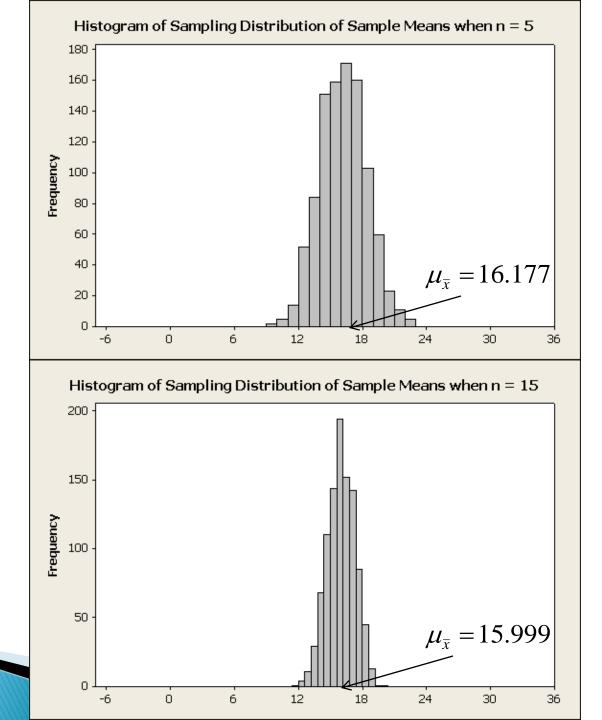
- What does the shape of the sampling distribution depend on?
- What statistical value will be found at the center of the sampling distribution?
- How will the spread of the sampling distribution compare to the spread of the population distribution?
- Does the spread depend on a certain quantity?

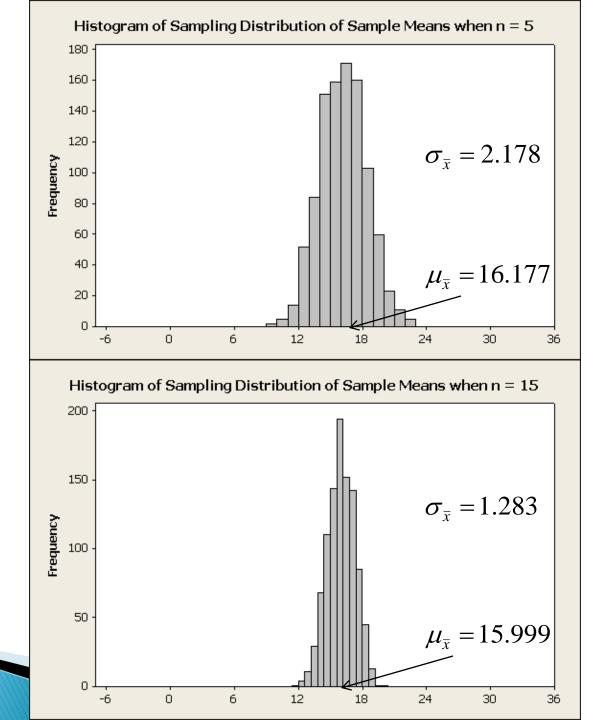
Sampling Distribution example

Our population looks something like this:

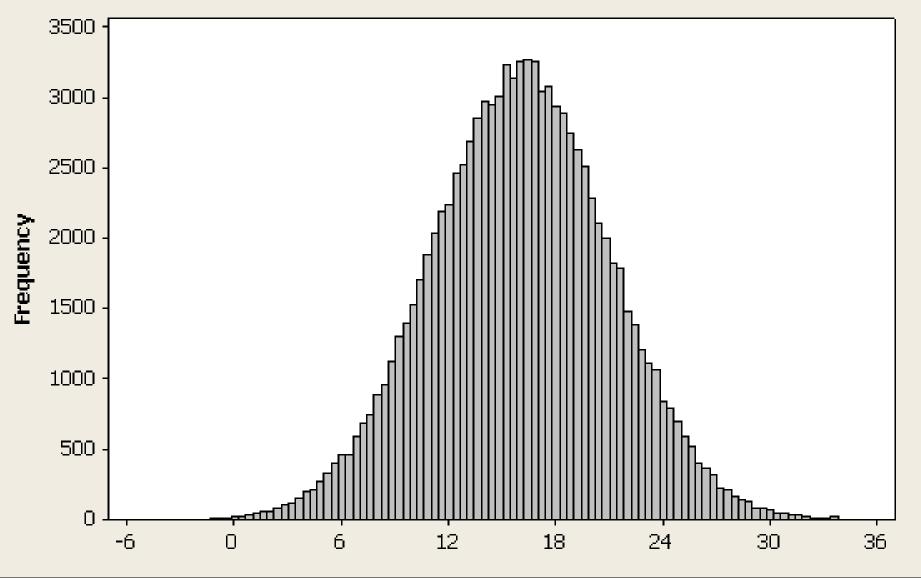




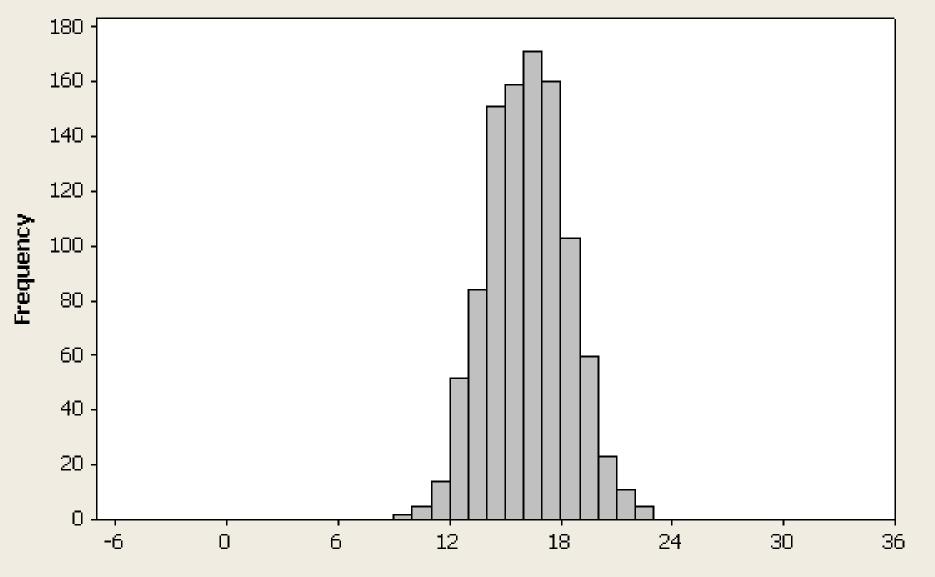




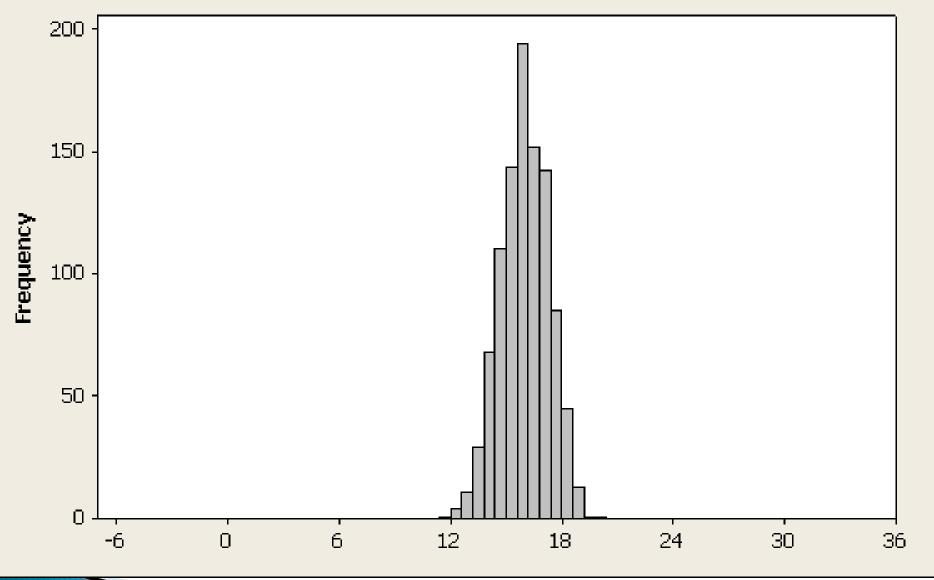
Histogram of Population



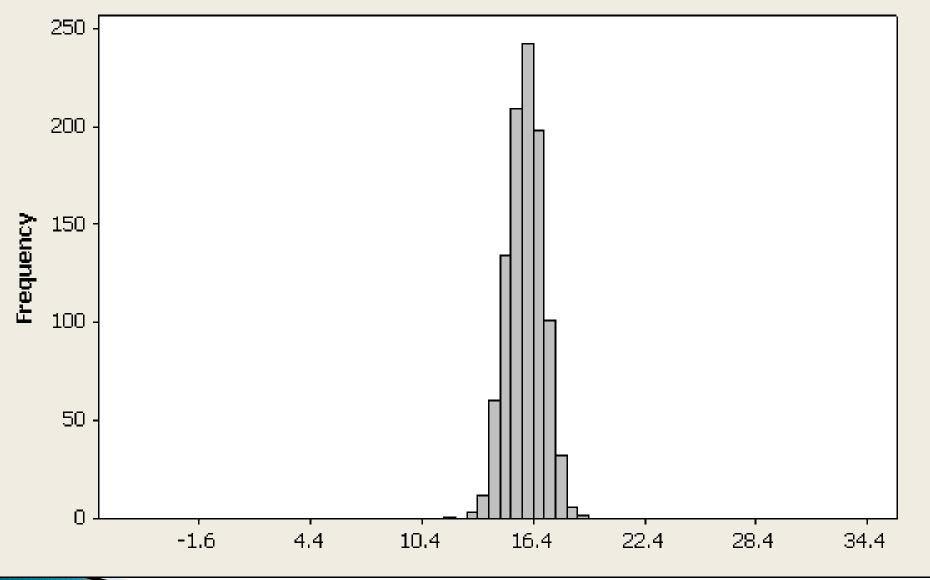
Histogram of Sampling Distribution of Sample Means when n = 5

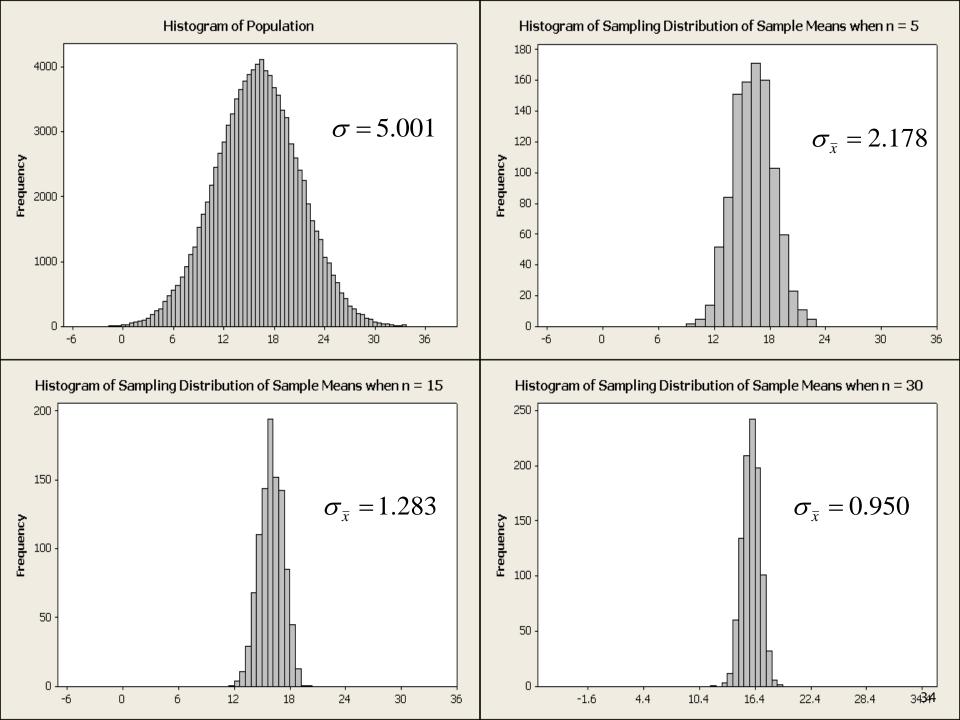


Histogram of Sampling Distribution of Sample Means when n = 15



Histogram of Sampling Distribution of Sample Means when n = 30





Questions and answers (normal population)

- What is the shape of the sampling distribution?
 - Our sampling distribution looks normal.
- What statistical value will be found at the center of the sampling distribution?
 - The mean of the sample means will be very close to the population mean.
- How will the spread of the sampling distribution compare to the spread of the population distribution?
 - The spread of our sampling distribution is smaller than that of the population
- Does the spread depend on a certain quantity?

The bigger our sample the smaller the spread of the sampling distribution

From my simulations...

• Population: $\mu = 15.995$, $\sigma = 5.001$

Sampling distributions when

• n = 5: $\mu_{\bar{x}} = 16.177, \sigma_{\bar{x}} = 2.178 \approx \frac{\sigma}{\sqrt{n}} = \frac{5}{\sqrt{5}} = 2.236$ • n = 15: $\mu_{\bar{x}} = 15.999, \sigma_{\bar{x}} = 1.283 \approx \frac{5}{\sqrt{15}} = 1.291$ • n = 30: $\mu_{\bar{x}} = 15.978, \sigma_{\bar{x}} = 0.950 \approx \frac{5}{\sqrt{30}} = 0.913$

The Standard Error

 The standard error is another name for the spread, or standard deviation, of a sampling distribution

 \sqrt{n}

The Standard Error for a sample mean is found by:

Shape, Center, and Spread

- If our population is normal, the shape of our sampling distribution of the sample mean will be approximately normal regardless of sample size
- The mean of the sampling distribution is equal to the population mean μ .
- The standard deviation of the sampling distribution is $\frac{\sigma}{\sqrt{n}}$, where *n* is the sample size.

Sampling Distribution of the Sample mean

- A random sample of size *n* is taken from a *normal population* with mean μ and variance σ^2 .
- A linear function (\bar{x}) of normal and independent random variables is itself normally distributed.

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n} \text{ has a normal distribution}$$

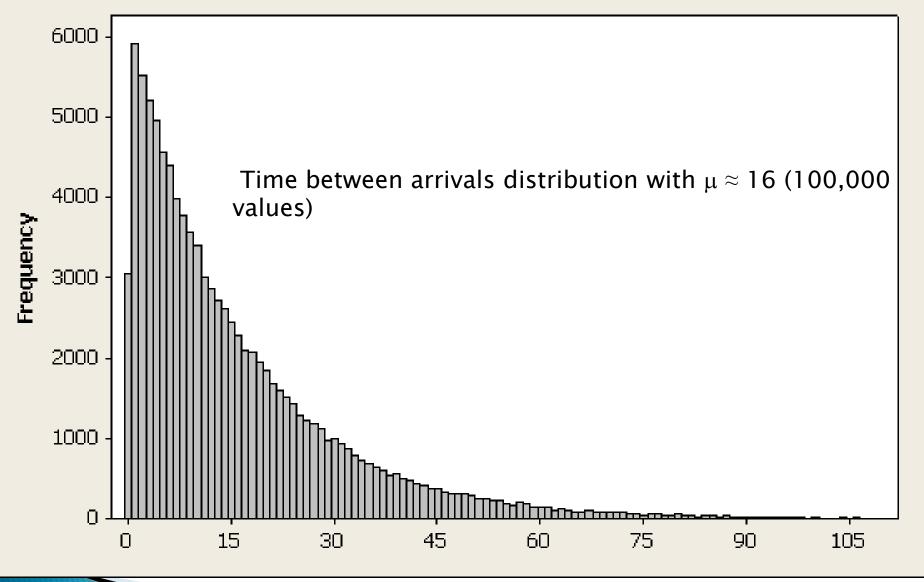
with mean $\mu_{\overline{X}} = \frac{\mu + \mu + \dots + \mu}{n} = \mu$
and variance $\sigma_{\overline{X}}^2 = \frac{\sigma^2 + \sigma^2 + \dots + \sigma^2}{n^2} = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}$

Sampling Distribution of the sample mean (non-normal population)

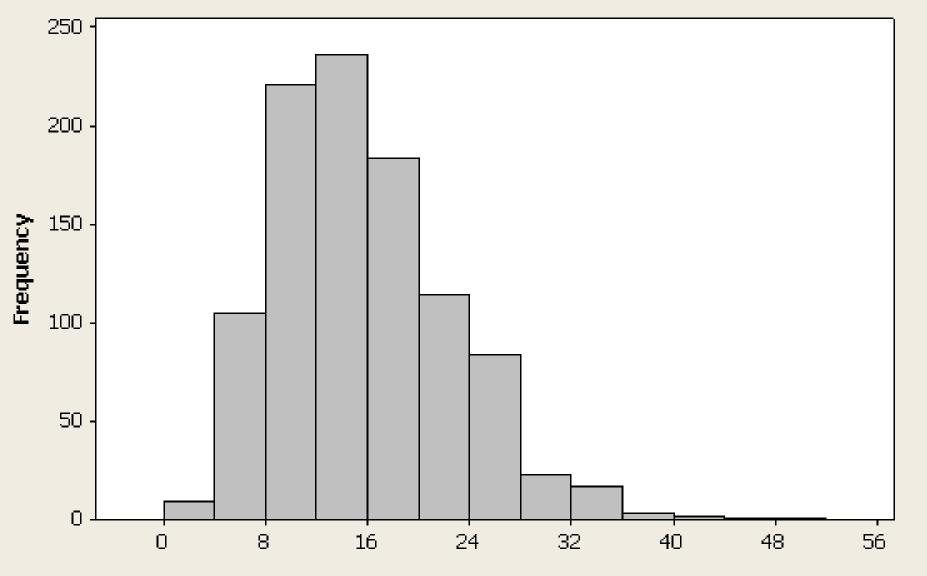
Consider the time between arrivals of vehicles at a particular intersection.
 Assume an exponential distribution with μ = σ = 16.

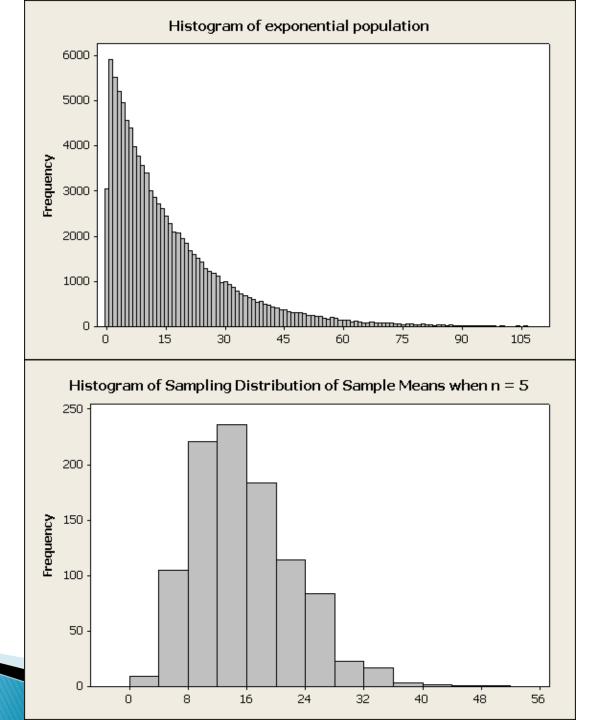
- Same procedure as earlier example (normal)
 - Took 1,000 samples of size 5 from the 100,000 exponential times in Minitab.
 - Calculated 1,000 means
 - Graphed those means in a histogram
 - Repeated this process using n = 15 and n = 30.

Histogram of exponential population

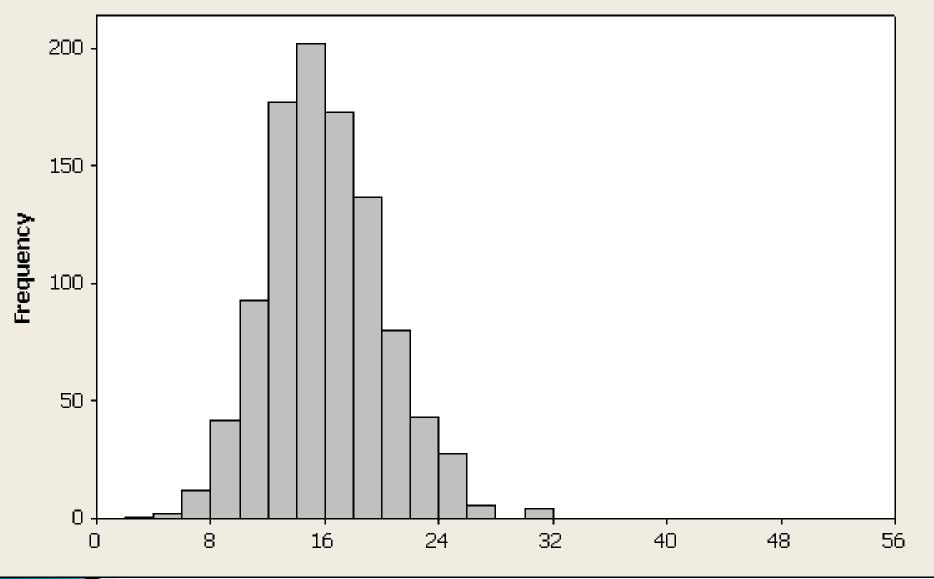


Histogram of Sampling Distribution of Sample Means when n = 5

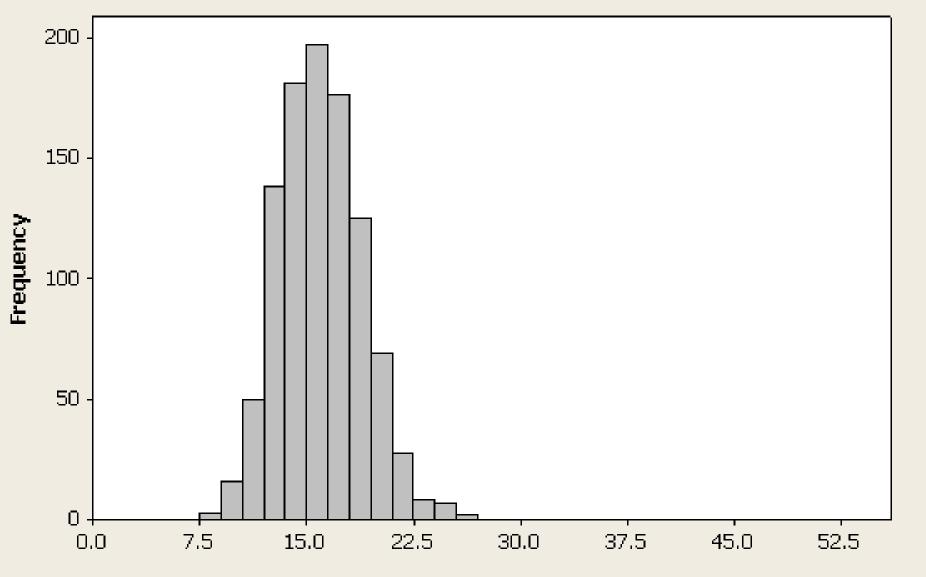




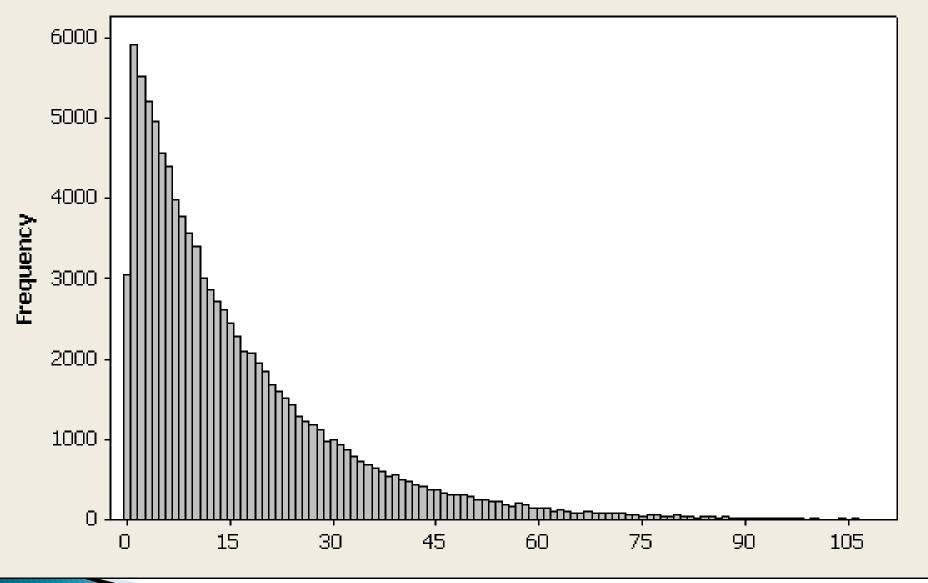
Histogram of Sampling Distribution of Sample Means when n = 15

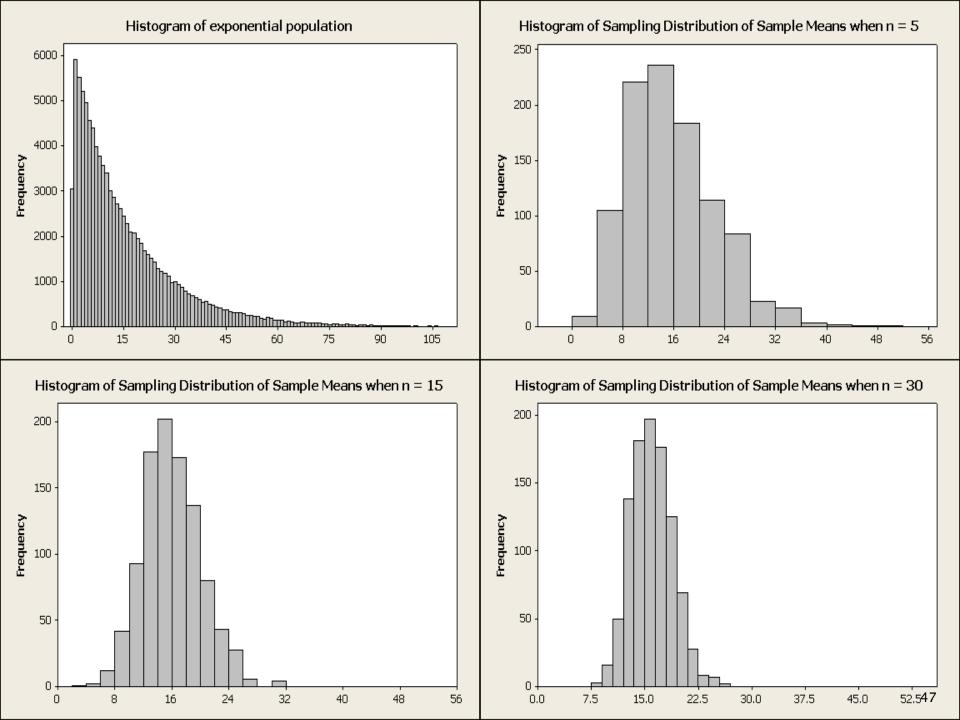


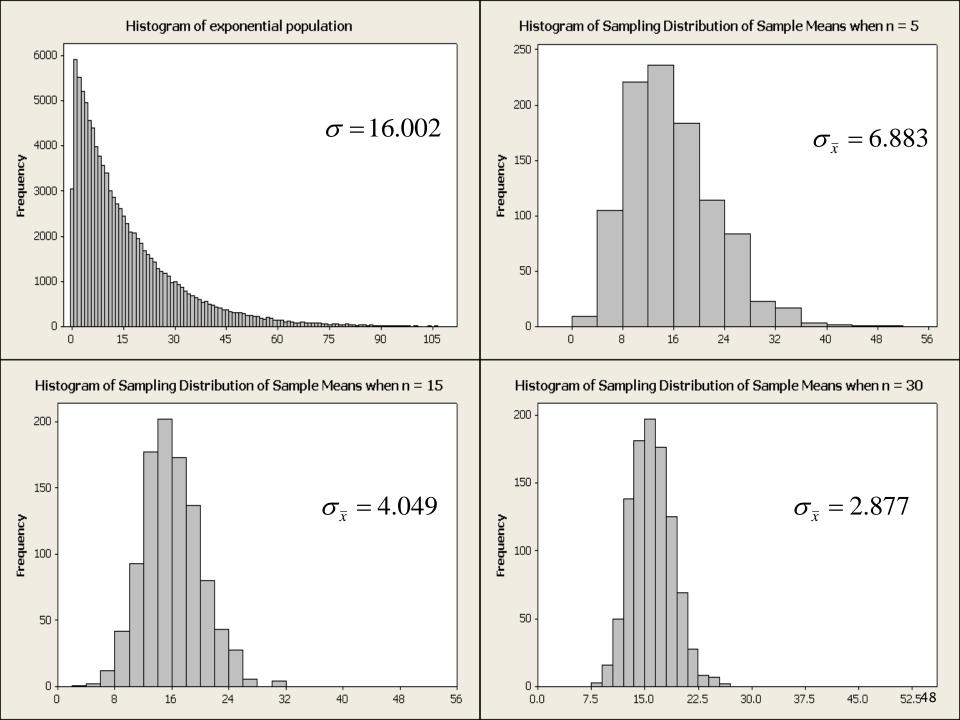
Histogram of Sampling Distribution of Sample Means when n = 30



Histogram of exponential population







Questions and answers (non-normal population)

- What is the shape of the sampling distribution?
 - Our sampling distribution still looks normal, even more so as our sample size gets large (n=30 yields best results)
- What statistical value will be found at the center of the sampling distribution?
 - The mean of the sample means is still very close to the population mean.
- How will the spread of the sampling distribution compare to the spread of the population distribution?
 - The spread of our sampling distribution is smaller than that of the population.
- Does the spread depend on a certain quantity?
 - The bigger our sample the smaller the spread of the sampling distribution (and the more normal it begins to look)

From my simulations...

• Population: $\mu = 15.967$, $\sigma = 16.002$

Sampling distributions when

• n = 5:
$$\mu_{\bar{x}} = 15.754, \sigma_{\bar{x}} = 6.883 \approx \frac{\sigma}{\sqrt{n}} = \frac{16}{\sqrt{5}} = 7.155$$

• n = 15: $\mu_{\bar{x}} = 16.003, \sigma_{\bar{x}} = 4.049 \approx \frac{16}{\sqrt{15}} = 4.131$
• n = 30: $\mu_{\bar{x}} = 15.964, \sigma_{\bar{x}} = 2.877 \approx \frac{16}{\sqrt{30}} = 2.921$

Shape, Center, and Spread

- If our population is non-normal, the shape of our sampling distribution of the sample mean will be approximately normal depending on the sample size of each sample (we'll use n > 30)
- The mean of the sampling distribution is equal to the population mean μ .
- The standard deviation of the sampling distribution is $\sigma_{\sqrt{n}}$, where *n* is the sample size.

Central Limit Theorem

When randomly sampling from any population with mean μ and standard deviation σ , the sampling distribution of \bar{x} is approximately normal with mean = μ and s.d = $\frac{\sigma}{\sqrt{n}}$ when the sample size, n, is "sufficiently large".

Note: In general, we can assume n ≥ 30 is "sufficiently large"

Implications of the CLT

1.) If the rv X is normal the distribution of the sample means is normal no matter what sample size is taken.

If our Population ~ N(μ , σ) Then \overline{X} ~ N(μ , $\frac{\sigma}{\sqrt{n}}$) for **ANY** n.

2.) If the rv X is non-normal, the distribution of sample means is approximately normal for a "sufficiently large" sample size (n \geq 30)

If our Population ~ $?(\mu,\sigma)$ aka non-normal Then $\overline{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$ IF n > 30

Implications of the CLT cont...

- How does all of that help us?
- We can assume normality of the sampling distribution and standardize to find probabilities about the sample mean

In words : $z = \frac{(\text{value} - \text{mean})}{\text{standard deviation}}$

$$Z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$$

Implications of the CLT

There are certain types of problems that we now can do assuming the CLT holds:

- Find probabilities associated with a single individual from a Normal Population (already know)
- Find probabilities associated with a small sample from a Normal Population
- Find probabilities associated with a large sample from a Normal Population
- Find probabilities associated with a large sample from a Non-Normal Population

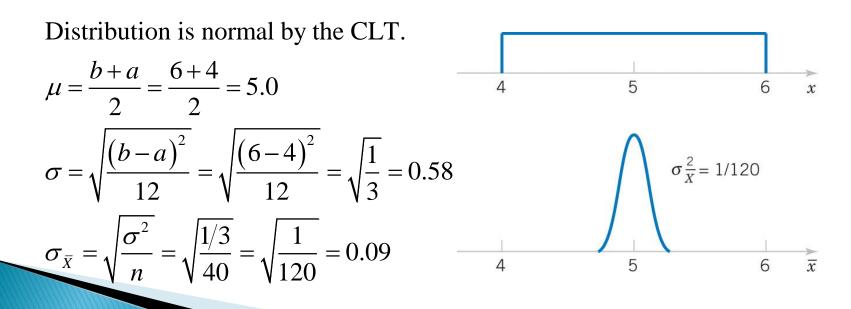
Implications of the CLT

Can't Do (Yet):

- Find probabilities associated with a single individual from a Non-Normal Population
- Find probabilities associated with a small sample from a Non-Normal Population

CLT example 1

- Suppose that a random variable X has a continuous uniform distribution: $f(x) = \begin{cases} 1/2, & 4 \le x \le 6 \\ 0, & \text{otherwise} \end{cases}$
- Describe the distribution of the sample mean of a random sample of size n = 40



CLT Example 2

An electronics company manufactures resistors having a mean resistance of 100 ohms and a standard deviation of 10 ohms. The distribution of resistance is normal. What is the probability that a random sample of n = 25 resistors will have an average resistance of less than 95 ohms?

$$\sigma_{\bar{X}} = \frac{\sigma_{X}}{\sqrt{n}} = \frac{10}{\sqrt{25}} = 2.0$$

$$P(\bar{X} < 95) = \Phi\left(\frac{\bar{X} - \mu}{\sigma_{\bar{X}}}\right) = \Phi\left(\frac{95 - 100}{2}\right)$$

$$= \Phi(-2.5) = 0.0062$$
0.0062 = NORMSDIST(-2.5)
A rare event at less than 1%.

Checking Normality Visually

- Many times, we need to know if a sample seems to come from a Normal Distribution.
- There are numerical ways to do this, but now we will focus on Visual Methods. You could use:
 - Histograms with overlaying Normal density curves
 - Could be issues w/ sample size, bin size, etc...
 - Outliers not always obvious
 - Normal Probability (Q–Q) plots
 - Best option

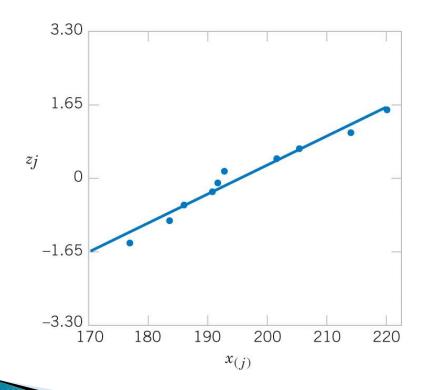
How To Build a Probability Plot

To construct a probability plot:

- Sort the data observations in ascending order: X₍₁₎, X₍₂₎,..., X_(n).
- Pair each observation with either it's quantile or it's Z score (for normal)
- If the paired numbers form a straight line, it is reasonable to assume that the data follows the proposed distribution.

Probability Plot on Ordinary Axes

A normal probability plot can be plotted on ordinary axes using z-values. The normal probability scale is not used.



Calculations for Constructing a Normal Probability Plot			
j	x _(j)	(<i>j</i> -0.5)/10	Z _j
1	176	0.05	-1.64
2	183	0.15	-1.04
3	185	0.25	-0.67
4	190	0.35	-0.39
5	191	0.45	-0.13
6	192	0.55	0.13
7	201	0.65	0.39
8	205	0.75	0.67
9	214	0.85	1.04
10	220	0.95	1.64

Use of the Probability Plot

- The probability plot can identify variations from a normal distribution shape.
 - Light (short) tails of the distribution more peaked.
 - Heavy (Long) tails of the distribution less peaked.
 - Skewed distributions can also be identified
- Larger samples increase the clarity of the conclusions reached.

Probability Plot Variations

Right Skew - If the plotted points appear to bend up and to the left of the normal line that indicates a long tail to the right.

Left Skew - If the plotted points bend down and to the right of the normal line that indicates a long tail to the left.

Short Tails - An S shaped-curve indicates shorter than normal tails, i.e. less variance than expected.

Long Tails - A curve which starts below the normal line, bends to follow it, and ends above it indicates long tails. That is, you are seeing more variance than you would expect in a normal distribution.

Probability Plot Minitab Example

Default:

99

95

90

80 70

10 5

> 1 90

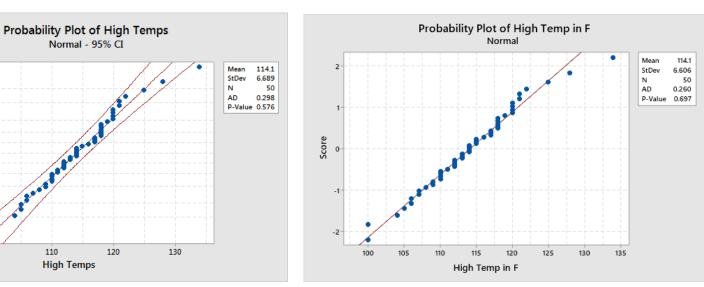
100

Percent 60

- Using High Temps Data
- Graph > Probability Plot > single > Choose Data
 - Distribution button > choose distribution (normal here)

Edits:

- Distribution Button-> Data Display Tab -> ٠ Uncheck Show C.I.
- Scale Button-> Y-Scale-> Score



Behavior of Means (σ unKnown)

- So we can use one sample mean to find probabilities. However, there is one problem...
- We most likely will not have knowledge of the population standard deviation σ, but we can estimate it.

Estimate σ

- \blacktriangleright Estimate the population standard deviation σ with the sample standard deviation, s.
- \blacktriangleright s is known to be a good estimate of $\sigma.$
- s is a statistic calculated from the sample data.

Formulas

Population standard deviation

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}}$$

Sample standard deviation

$$s = \sqrt{\frac{\sum_{i=1}^{n} \left(x_i - \overline{x}\right)^2}{n-1}}$$

Information

- > There exists only one value of σ for a population.
- Each sample one takes produces another different sample standard deviation, s.
 - S has it's own sampling distribution which we will discuss later
- > s is an unbiased estimate of σ only when we divide by n 1 in the formula.
 - We have n 1 degrees of freedom

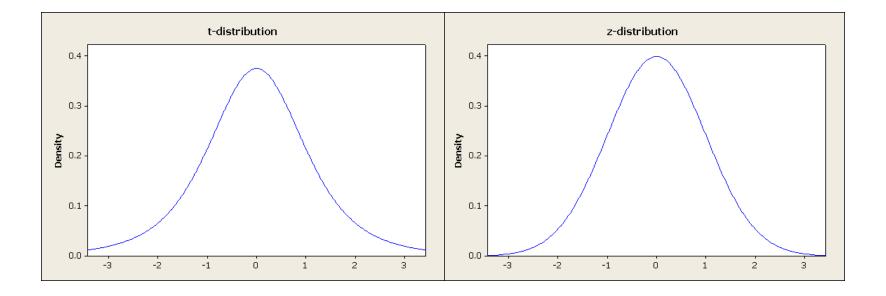
Conditions for Inference with t

- Data still need to be collected randomly and independently
- In addition, either the population must be normally distributed or the sample size must be fairly large (n > 30).
- However, since we are estimating σ with s, we need to introduce a new distribution to use for inference.

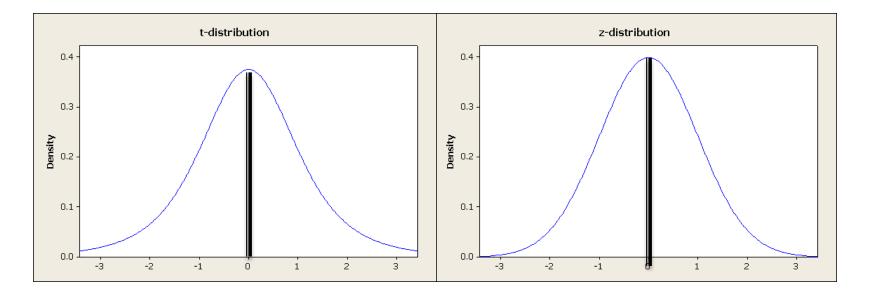
t-distribution

- Used when σ is unknown.
- Family of t-distributions that depend on degrees of freedom (n - 1).
- There is a different t-distribution curve for each degree of freedom.

Compare t and z distributions



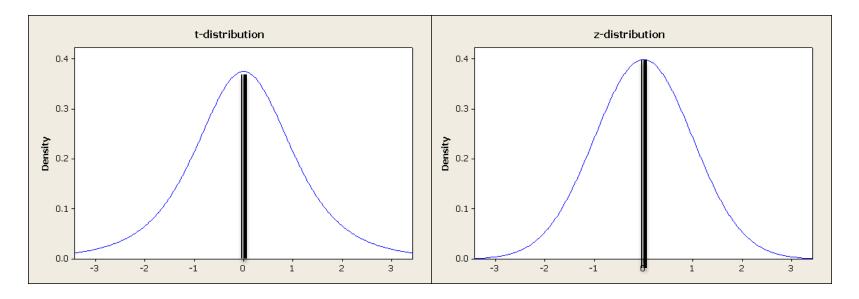
Compare t and z distributions



<u>Similarities</u>

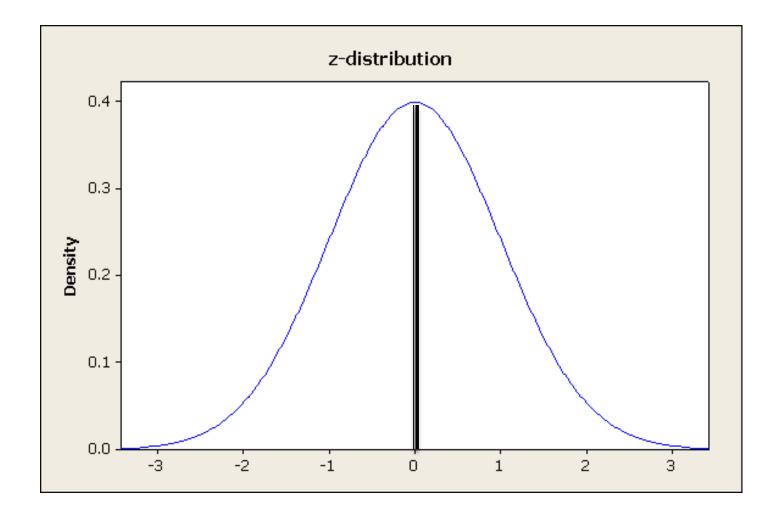
- Bell Shaped
- Symmetrical
- Centered at 0

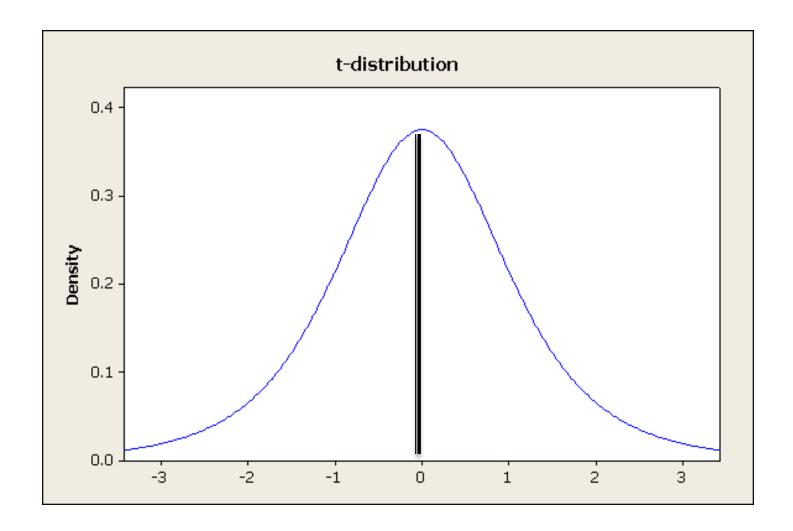
Compare t and z distributions

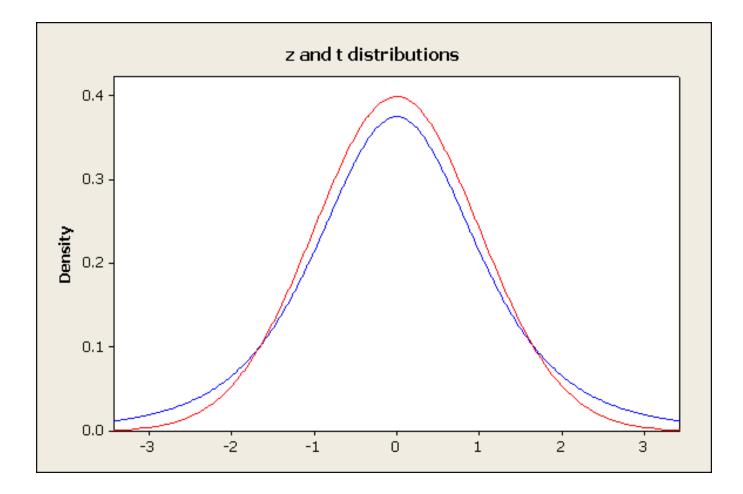


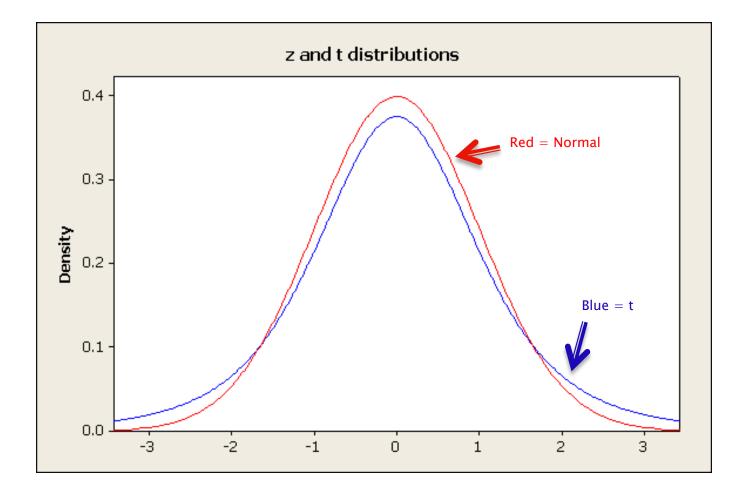
Differences

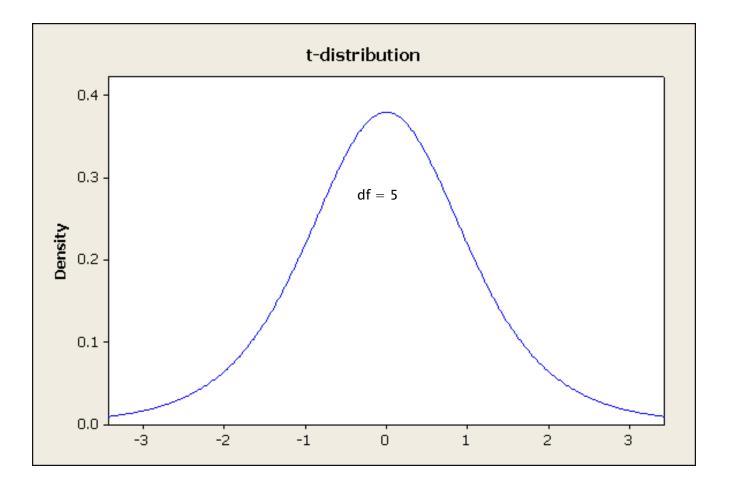
- t distribution is more spread out than z distribution
- Standard deviation of t distribution > 1
- More area in the tails of the t-distribution

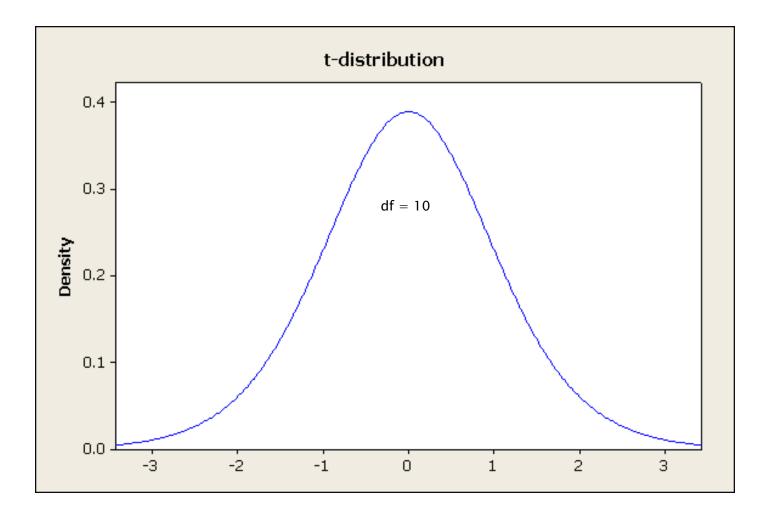


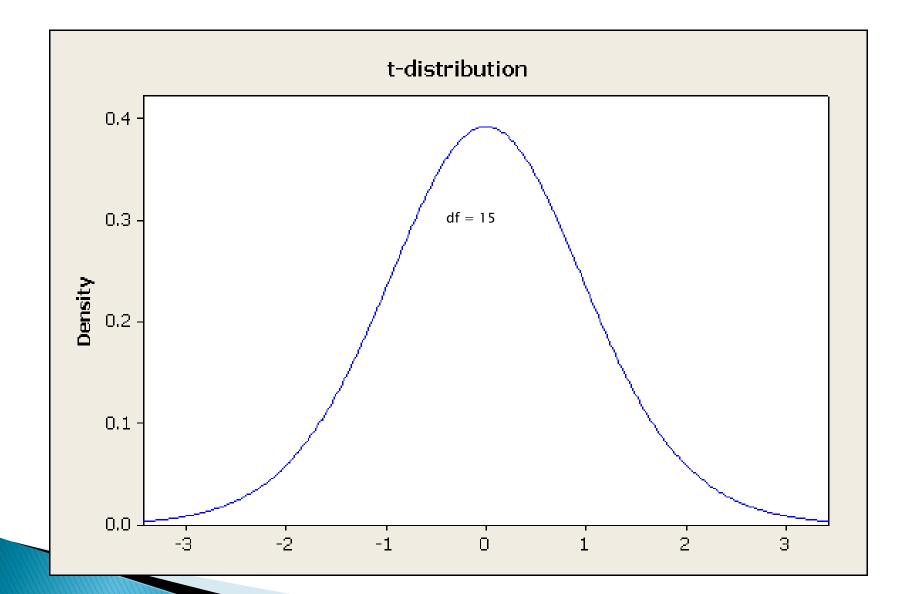


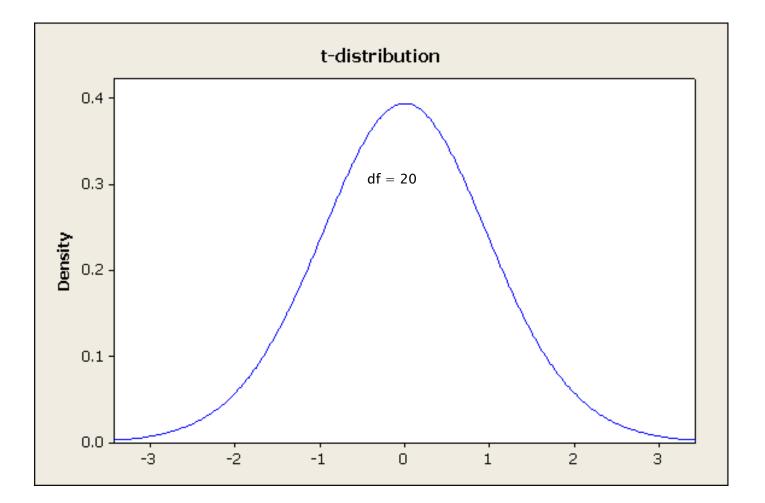


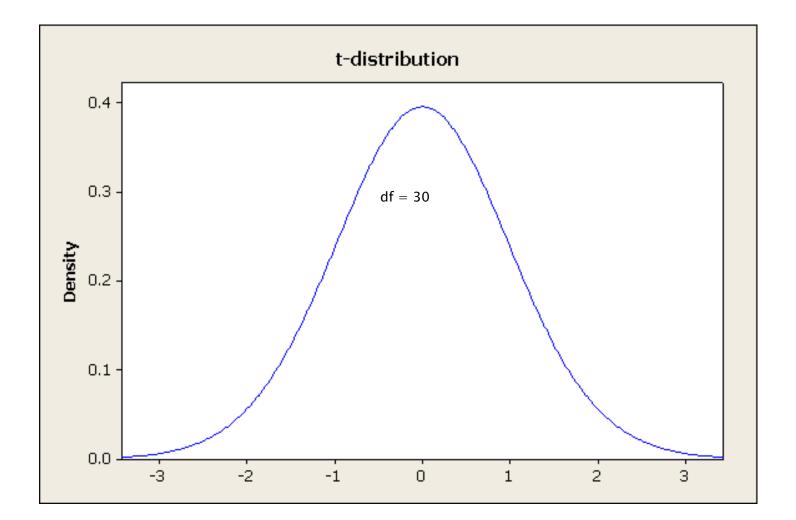


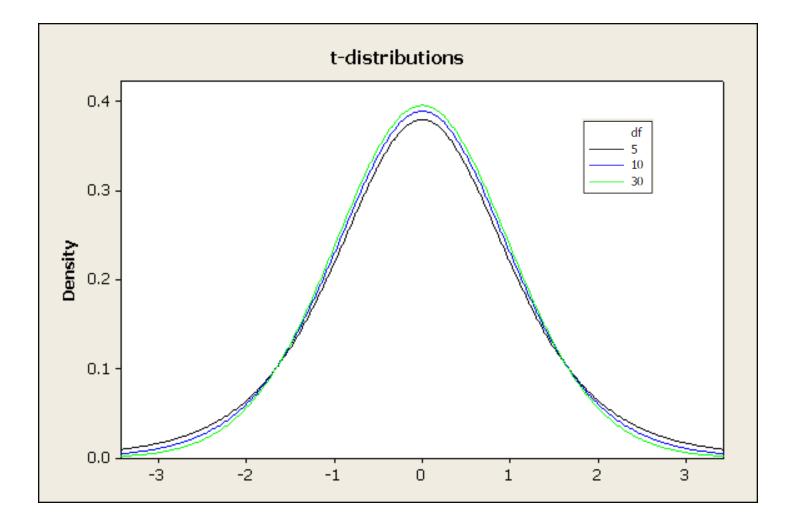


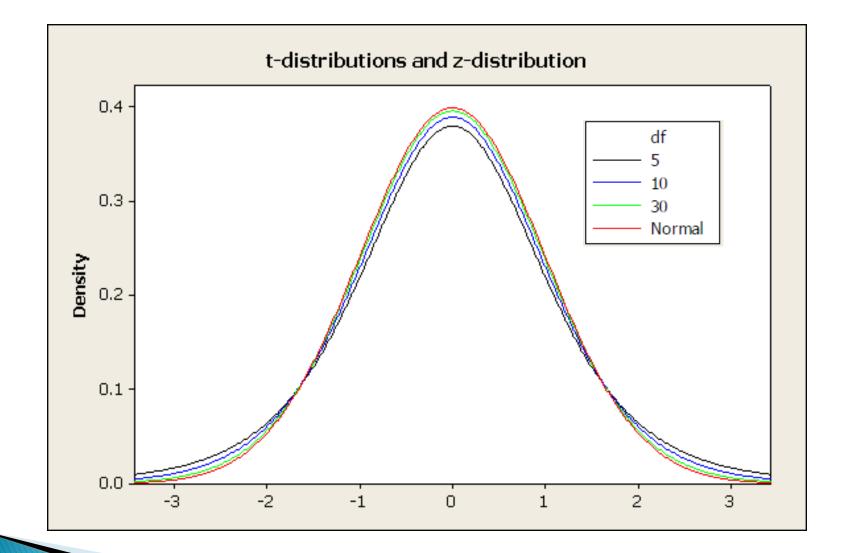












Summary

- As the degrees of freedom increase, the tdistribution's shape gets closer and closer to a z-distribution.
- At around n = 30-40 the difference is nearly indistinguishable.

Use of t-distribution

- Used when σ is unknown typically for small samples
- Most appropriate when the population we are sampling from is *normal* but can be used when it:
 - Does not contain outliers
 - Is not extremely skewed
- Assumptions can be eased if one collects a larger sample.

T Distribution Example

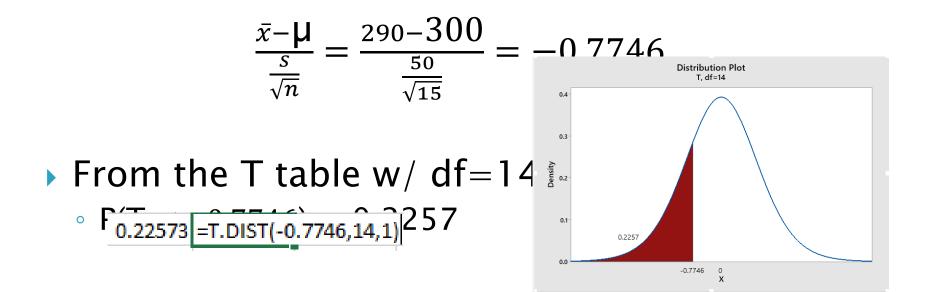
- The CEO of light bulbs manufacturing company claims that an average light bulb lasts 300 days. A researcher randomly selects 15 bulbs for testing. The sampled bulbs last an average of 290 days, with a standard deviation of 50 days.
- If the CEO's claim were true, what is the probability that 15 randomly selected bulbs would have an average life of no more than 290 days?
- What distribution should we use? Check assumptions:

T Distribution Example cont...

- We have no information about the population except a claimed mean
 - µ= 300
- We have more information about the sample:
 - n=15
 - $\cdot \bar{x} = 290$
 - \circ s = 50
- > We do not know σ or have n>30, CLT does not hold
 - Must use the T distribution

T Distribution Example cont...

Find P(X \leq 290) form the t distribution w/df=15-1=14



Approximating Discrete Distributions

- Important Discrete Distributions:
 - $\circ\,$ Poisson The number of events (x) likely to happen on a fixed interval with rate λ
 - Binomial Probability of x successes in a fixed number of trials (n) with (p) probability of success
- We know how to solve these, but what if our numbers get really big?

Binomial example

- In a digital communication channel, assume that the number of bits received in error can be modeled by a binomial random variable.
- The probability that a bit is received in error is 0.00001 (10⁻⁵). If 16 million bits are transmitted, what is the probability that 150 or fewer errors occur?
- Let X denote the number of errors. Can we solve this?

$$P(X \le 150) = \sum_{x=0}^{150} C_x^{16000000} (10^{-5})^x (1 - 10^{-5})^{16000000 - x}$$

Technically, yes, but too hard manually.

Approximating w/ the Normal

- So what if our numbers get really big?
 - We can approximate these distributions with the Normal
 - We will focus on this with the binomial, but it can also be done in a similar manner with the Poisson
- Let's visualize this in Minitab
- If n is large, and p is not too close to 0 or 1, the binomial distribution can be approximated by the normal distribution.

Normal Approximation for the Binomial

Recall the Binomial Mean and SD.

$$\mu = np$$

$$\sigma^{2} = np(1-p)$$

$$\sigma = \sqrt{np(1-p)}$$

Then if we can say :

X is approx.
$$N(np, \sqrt{np(1-p)})$$

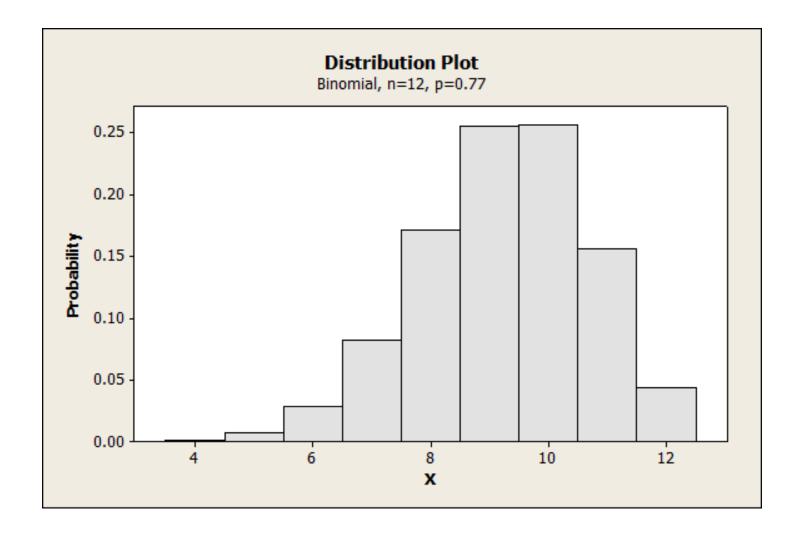
• A common rule of thumb, we will use the approximation for values of n and p that satisfy both:

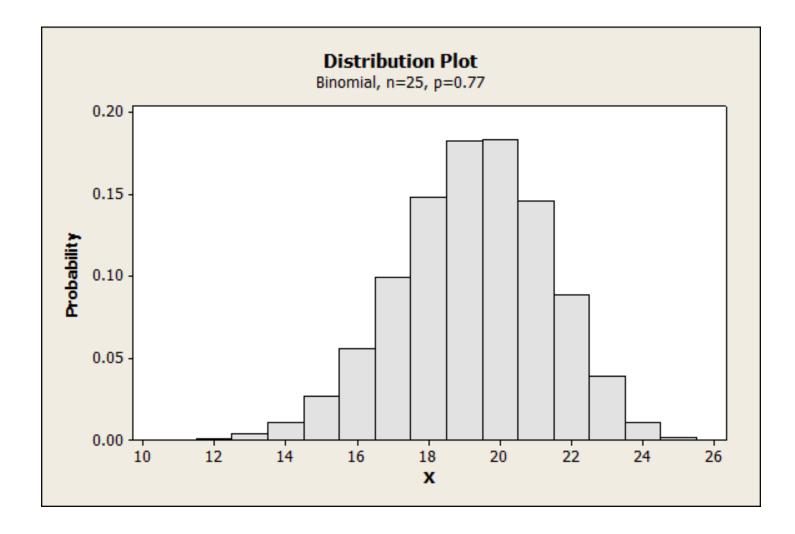
 $np \ge 5$ and $n(1 - p) \ge 5$

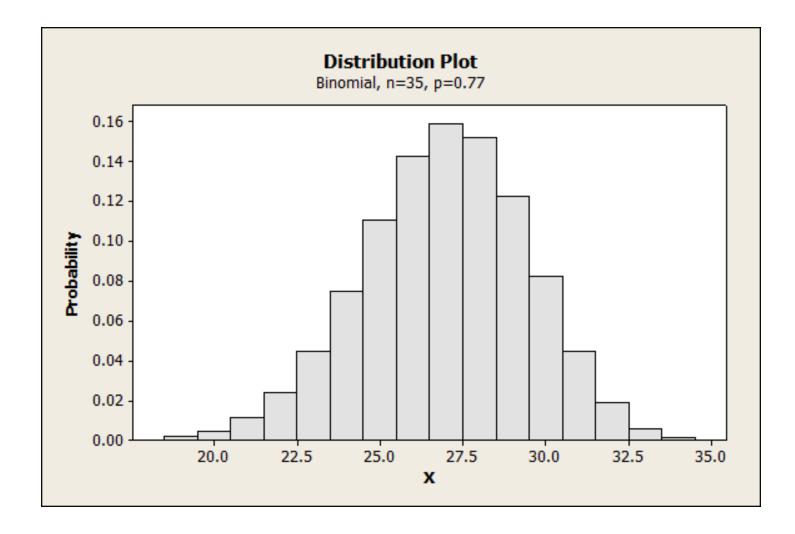
- Suppose the probability that on entering college, a student will graduate in 4 years is 0.77. An academic advisor is advising 12 freshmen.
- Would the approximation work?

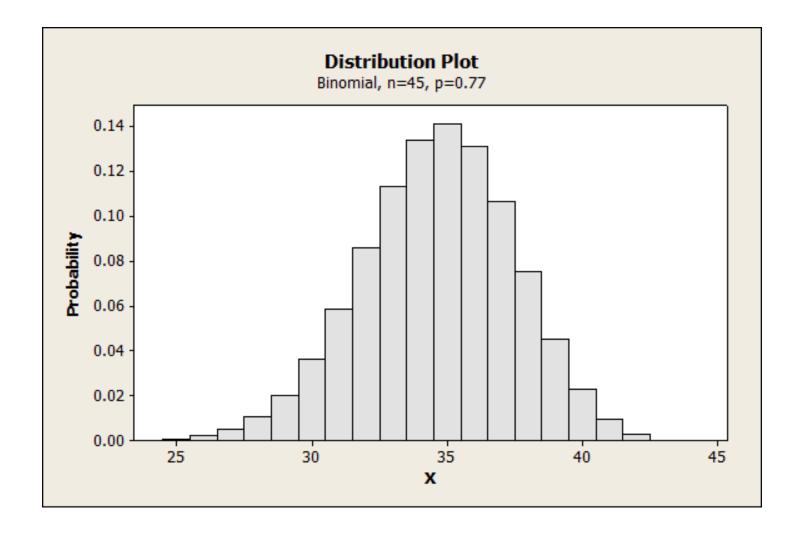
12(0.77) = 9.24 and 12(1 - 0.77) = 2.76

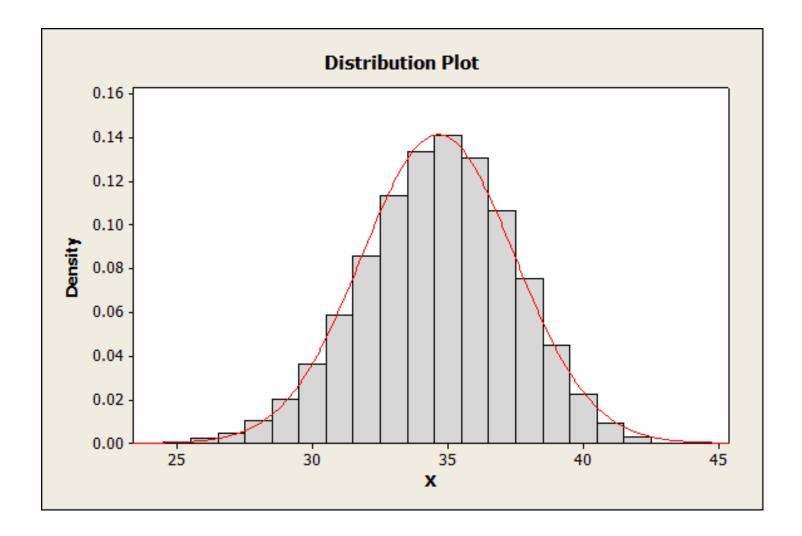
- We do not meet the criteria.
- Let's see what that distribution looks like...











Now would the approximation work?

45(0.77) = 34.65 and 45(1 - 0.77) = 10.35

- Both calculations are greater than 10.
- Thus, this binomial distribution can be approximated with the normal distribution.

- Start with X ~ B(45, 0.77)
- We meet our criteria
- Then calculate the mean and standard deviation of this binomial distribution

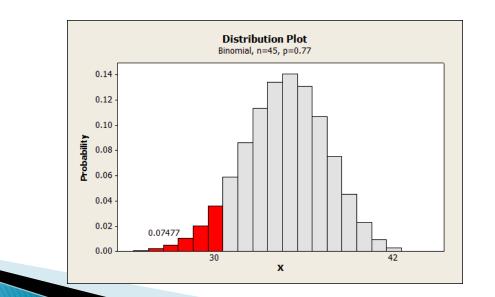
$$\mu = np = 45(0.77) = 34.65$$

$$\sigma = \sqrt{np(1-p)} = \sqrt{45(0.77)(0.23)} = 2.823$$

Thus our approximate distribution is:

X is approx. N(34.65, 2.823)

- From this SRS of 45, what is the probability that 30 or less graduate?
- Exact Binomial probability: $P(X \le 30) = 0.075$

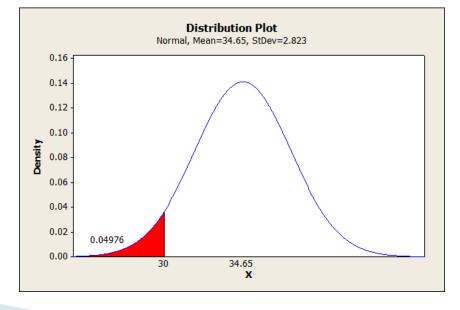


Consider the normal approximation: N(34.65, 2.823)

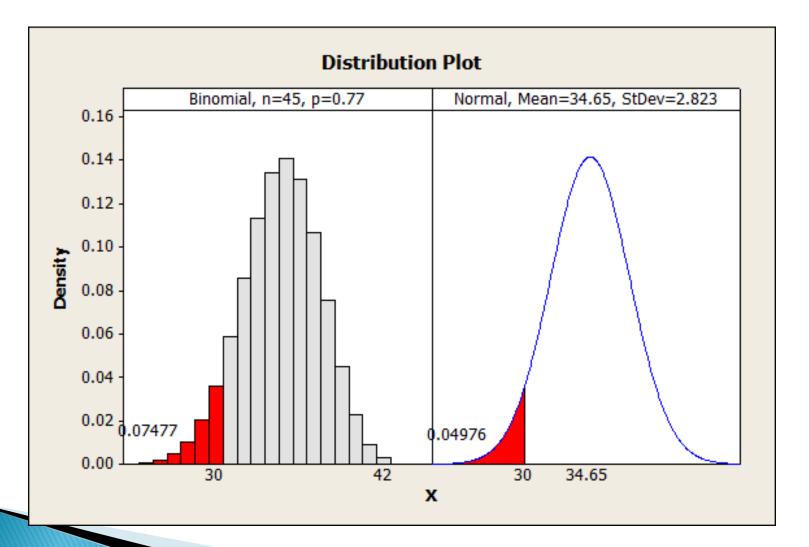
• $P(X \le 30)$

$$z = \frac{30 - 34.65}{2.823} = -1.65$$

• $P(X \le 30) = 0.0495$

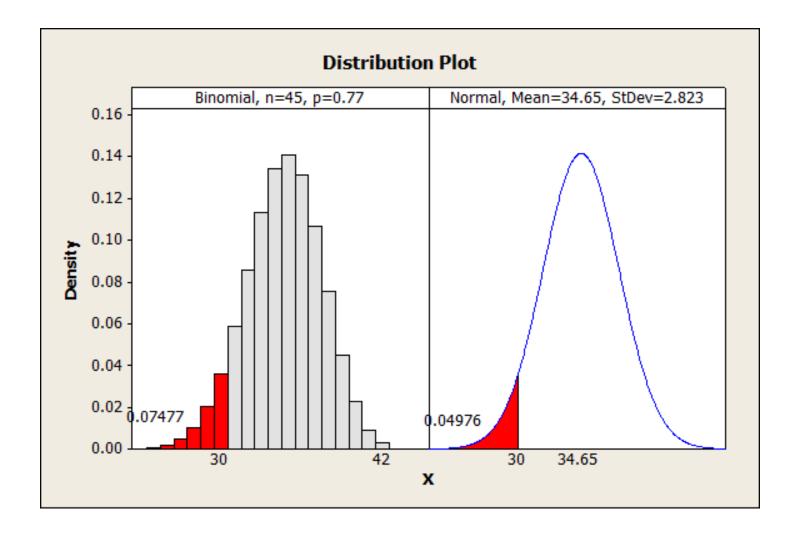


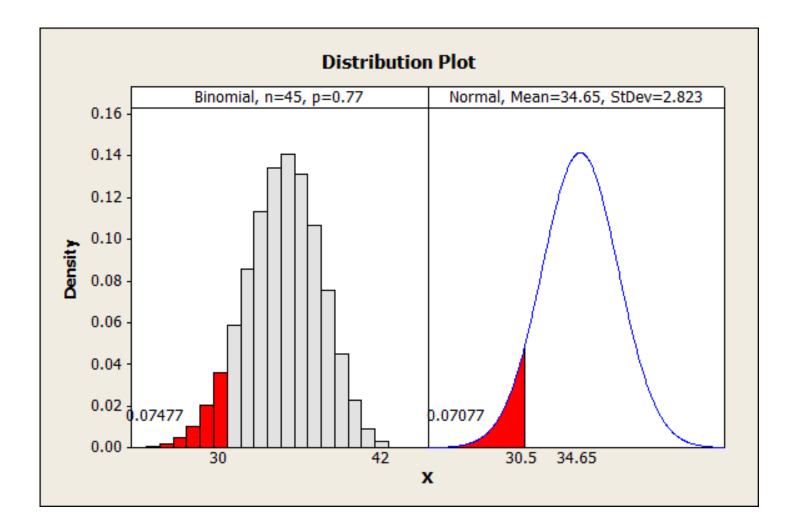
Comparison



Normal Approximation

- The normal approximation is not perfect.
- A continuity correction can be made to improve the approximation.
- Adding 0.5 to our x value utilizes what we call the continuity correction





Normal Approximation to the Poisson

- Let X be a Poisson RV w/ mean = λ = VAR
- Then we can apply similar ideas and use:

$$Z = \frac{X - \lambda}{\sqrt{\lambda}}$$

Typically works when :

 $\lambda \ge 5$

Normal Approximation to Poisson

Assume that the number of asbestos particles in a square meter of dust on a surface follows a Poisson distribution with a mean of 1000. If a square meter of dust is analyzed, what is the probability that 950 or fewer particles are found?

$$P(X \le 950) = \sum_{x=0}^{950} \frac{e^{-1000} 1000^x}{x!} \quad \dots \text{ too hard manually!}$$
$$\approx P(X < 950.5) = P\left(Z < \frac{950.5 - 1000}{\sqrt{1000}}\right)$$
$$= P(Z < -1.57) = 0.058$$